조선해양공학과

Department of Naval Architecture & Marine Engineering

학과사무실 동명관112호 / Tel.051-629-1641

1. 학과소개

본 학과 대학원은 조선 및 해양에서의 구조물의 설계, 생산 및 관련기술 향상에 필요한 전문지식을 교육하며, 이와 관련된 연구의 수행을 통해 우수인력을 양성하고자 한다.

석사과정은 조선해양공학 분야의 고급이론 습득 및 실험 등을 통하여 직면하는 각종 문제를 스스로 해결할 수 있는 능력을 갖춘 인물의 배출을 목표로 설립되었다. 또한 전공의 세부분야에 대한 심도있는 연구를 통하여 창조적으로 문제를 제기하고 해답을 추구하며 해당분야의 연구내용을 지속적으로 향상 발전시킬 수 있는 인재의 배출을 목표로 한다.

■ 전공분야

조선해양공학

2. 교육목표

- 조선해양공학에 대한 전공지식을 이해하고, 이를 창의적으로 활용할 수 있는 공학도의 양성
- 기본역학 및 해석,설계 및 생산 엔지니어링 기술에 대한 이해와 적용력을 갖춘 우수한 조선전문기술 인력의 육성
- 산업현장 적응력이 뛰어나고, 우리나라 조선산업의 기술혁신에 기여할 수 있는 전문인력 양성
- 세계 최고 수준의 조선해양산업의 지속적인 발전을 위해 조선시장의 흐름을 이해하고, 국제적인 기술 경쟁력을 갖춘 조선공학도의 양성

3. 학과교수명단

직명	교수명	전공분야	학위
교수	김국현	부산대학교	공학박사
부교수	박동우	부산대학교	공학박사
조교수	양영준	부산대학교	공학박사
조교수	박성주	인하대학교	공학박사
조교수	가와무로 겐이치로	국립경상대학교	국제지역학석사

4. 교육과정

개설 학기	과정	교과 구분	필수/ 선택	과목 코드	교 과 목 명		학 점	시 수
학기	中岛	구분	선택	코드	국문	영문	점	수
전체	석사	기초 공통	필수	1053	연구방법론(일반대학 원)	Research Methodology	3	3
전체	석사	전공	필수	2830	석사논문연구(조선)	Masters Thesis Research	3	3
1	석사	기초 공통	필수	2831	구조역학특론	Advanced Structure Mechanics	3	3
1	석사	기초 공통	필수	2837	유체역학특론	Advanced Fluid Mechanics	3	3
1	석사	기초 공통	필수	2838	선박운동조종특론	Advanced Ship Maneuverability	3	3
1	석사	전공	필수	2832	구조동역학특론	Advanced Structure Dynamics	3	3
2	석사	전공	선택	2833	전산구조해석특론	Advanced Finite Anaysis Method	3	3
2	석사	전공	선택	2834	구조DT특론	Advanced Structural Digital Twin	3	3
1	석사	전공	선택	2835	수중음향학특론	Advanced Underwater Acoustics	3	3
2	석사	전공	선택	2836	재료공학특론	Advanced Material Engineering	3	3
2	석사	전공	선택	2839	전산유체역학특론	Advanced Computational Fluid Dynamics	3	3
2	석사	전공	선택	2840	유체DT특론	Advanced Fluid Digital Twin	3	3
2	석사	전공	선택	2841	선박저항추진특론	Advanced Ship Resistance	3	3
1	석사	전공	선택	2842	해양파특론	Advanced Ocean Wave	3	3
1	석사	전공	선택	2843	특수선박특론	Advanced Special Ship	3	3
1	석사	전공	선택	2844	전기제어특론	Advanced Electrical Control	3	3
2	석사	전공	선택	2845	전기회로특론	Advanced Electrical Circuits	3	3
1	석사	전공	선택	2846	동역학및제어특론	Advanced Structure Mechanics	3	3
2	석사	전공	선택	2847	스마트센서공학특론	Advanced Smart Sensor Engineering	3	3
1	석사	전공	선택	2848	신호처리특론	Advanced Signal Processing	3	3
총 개설 합계						60	60	

5. 교과목 해설

[기초공통]

- 연구방법론(Research Methodology): 추상화된 수준의 명제나 경험적 수준의 연구가설 사이의 논리적 관계를 파악하고 현상을 설명 및 예측 할 수 있도록 지식이나 이론을 개발하는 체계적인 방법을 학습한다.
- 석사논문연구(Masters Thesis Research): 석사 학위 논문 작성을 위해 주제 선정, 문헌고찰, 연구의 계획과 수행 방법, 연구 결과의 통계 처리 및 연구 논문의 작성 등을 함께 검토한다.
- 구조역학특론(Advanced Structure Mechanics): 구조역학의 기초 지식을 바탕으로 선박 및 해양구조물의 구조적 거동과 해석을 위한 관련 이론과 기술을 학습한다.
- 유체역학특론(Advanced Fluid Mechanics): 유체역학 기초를 바탕으로 응용 내용과 유동현상의 해석을 다루며, 실질적인 적용과 산업 문제를 다룬다.

■ **선박운동조종특론(Advanced Ship Maneuverability):** 선박의 운동과 조종 성능을 이해하고, 이를 평가하기 위한 이론과 실습을 수행한다.

[전공과목]

- 구조동역학특론(Advanced Structure Dynamics): 선박 및 해양 구조물의 구조동역학 특성을 분석하기 위한 이론과 수치적 기법을 학습한다.
- 전산구조해석특론(Advanced Finite Anaysis Method): 구조역학 심화 이론을 기반으로 전산구조해석의 기초와 심화 이론을 이해하고, 다양한 구조물의 구조적 거동 문제를 수치해석법을 통해 해결하는 방법을 학습한다.
- 구조DT특론(Advanced Structural Digital Twin): 구조 디지털 트윈의 개념과 원리를 이해하고, 구조물의 물리적 특성을 가상 공간에 구현하며, 실시간 데이터 수집 및 분석을 통해 구조물의 상태를 모니터링하는 방법을 학습한다.
- 수중음향학특론(Advanced Underwater Acoustics): 선박 수중에서의 음파의 물리적 성질과 응용 분야의 설계 인자를 학습하며, 소리의 발생, 전달에 관한 물리적 현상과 소음 해석 및 소음 저감 기술을 습득한다.
- 재료공학특론(Advanced Material Engineering): 조선해양분야에서 널리 사용되는 금속 재료들에 대해 미세조직, 기계적 특성 등을 학습한다.
- 전산유체역학특론(Advanced Computational Fluid Dynamics): 조선해양공학 분야에서 활용되는 유체운 동의 전산유체역학 시뮬레이션 기술과 적용 사례에 대해 학습한다.
- 유체DT특론(Advanced Fluid Digital Twin): 기계공학, 특히 열역학과 유체역학의 응용분야에 대한 교육을 목적으로 하며, 전산유체역학에 대한 이해와 방법을 습득한다. 이론 중심의 교육이 아닌 실무 중심의 교육을 통해 복잡하고 다양한 문제의 해결 방법을 소개한다.
- 선박저항추진특론(Advanced Ship Resistance): 선박저항 예측을 위한 이론을 강의하며, 조파현상 및 조 파저항 이론과 이를 응용한 선형 설계법과 수치 실험적 해석 방법을 다룬다.
- 해양파특론(Advanced Ocean Wave): 선박 또는 해양 구조물에 작용하는 파력을 해석하기 위한 해양파이론의 기초를 강의하고, 선형 및 비선형 파의 특성과 해석법을 습득한다.
- 특수선박특론(Advanced Special Ship): 특수한 목적을 위해 설계되고 운용되는 선박에 대한 전문 지식을 학습하며, 특수선박의 특징과 운용 원리에 대한 이해를 바탕으로 선박을 설계하고 운용하는 방법을 다룬다.
- 전기제어특론(Advanced Electrical Control): 전기 시스템의 제어와 자동화에 관한 이론과 기술을 학습

하며, 전기 시스템을 효율적으로 제어하고 자동화하기 위해 필요한 실무 지식을 다룬다.

- ■전기회로특론(Advanced Electrical Circuits): 전기 회로의 동작 원리, 전류와 전압의 관계, 전기 요소의 특성 등의 이론과 분석 방법을 학습하며, 전기 회로의 설계와 응용 분야를 다룬다.
- **동역학및제어특론(Advanced Structure Mechanics):** 로봇, 자동화 시스템 등의 동역학적 특성을 이해하고, 해당하는 제어 이론과 실무를 다룬다.
- 스마트센서공학특론(Advanced Smart Sensor Engineering): 친환경 선박 및 해양 플랜트에 적용되고 있는 다양한 센서의 특성과 활용 방안을 심도 있게 학습한다.
- 신호처리특론(Advanced Signal Processing): 조선해양 분야의 상태 감시, 설비 진단 등에 사용되는 신호 계측과 관련된 이론을 학습한다.